ТРАНСФОРМАТОРЫ ТМГ11

Трехфазные масляные трансформаторы ТМГ11 предназначены для преобразования электроэнергии в сетях энергосистем и потребителей электроэнергии в условиях наружной или внутренней установки умеренного (от плюс 40 до минус 45 °C) или холодного (от плюс 40 до минус 60 °C) климата. Окружающая среда невзрывоопасная, не содержащая пыли в концентрациях, снижающих параметры изделий в недопустимых пределах. Трансформаторы не предназначены для работы в условиях тряски, вибрации, ударов, в химически активной среде. Высота установки над уровнем моря не более 1000 м.

Номинальная частота 50 Гц. Регулирование напряжения осуществляется в диапазоне до $\pm 5\%$ *на полностью отключенном трансформаторе* (ПБВ) переключением ответвлений обмотки ВН ступенями по 2,5.

Согласно ГОСТ 11677, предельные отклонения технических параметров трансформаторов составляют: напряжение короткого замыкания ±10%; потери короткого замыкания на основном ответвлении +10%; потери холостого хода +15%; полная масса +10%.

Трансформаторы ТМГ11 *герметичного исполнения, без маслорасширителей.*

Температурные изменения объема масла компенсируются изменением объема гофров бака за счет упругой их деформации.

Для контроля уровня масла в трансформаторах предусмотрен маслоуказатель поплавкового типа.

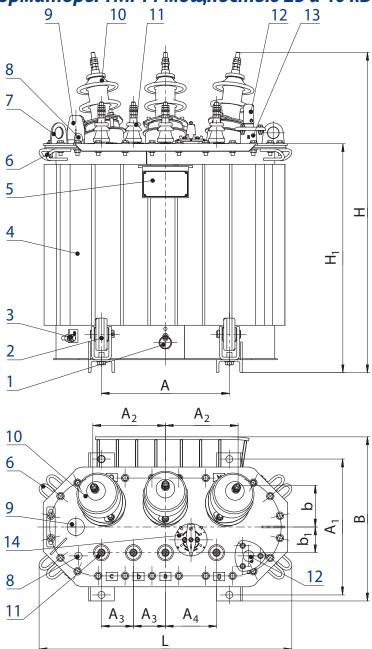
Для контроля внутреннего давления в баке и сигнализации в случае превышения им допустимых величин в трансформаторах мощьностью 100 кВ·А и выше, размещаемых в помещении, предусматривается (по заказу потребителя) установка электроконтактного мановакуумметра.

Для измерения температуры верхних слоев масла на крышке трансформаторов предусмотрена гильза для установки жидкостного стеклянного термометра. Жидкостными стеклянными термометрами трансформаторы комплектуются по заказу потребителя.

Для измерения температуры верхних слоев масла и управления внешними электрическими цепями трансформаторы мощностью 630... 2500 кВ-А предназначенные для эксплуатации в помещении или под навесом, по заказу потребителя комплектуются манометрическим сигнализирующим термометром.

Вводы и отводы нейтрали обмоток НН трансформаторов рассчитаны на продолжительную нагрузку током, равным 100 % номинального тока обмотки НН.

Трансформаторы мощностью 250 ... 2500 кВ·А комплектуются транспортными роликами для перемещения трансформатора в продольном и поперечном направлениях.

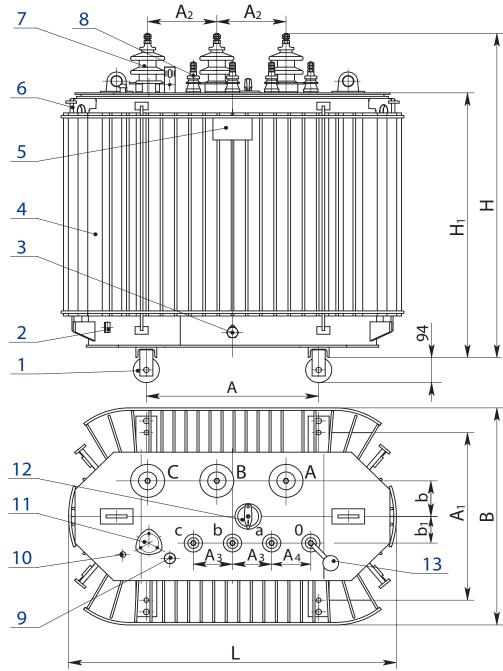

Трансформаторы мощностью 160 кВ-А классов напряжения 10 и 15 кВ комплектуются транспортными роликами по заказу потребителя.

При установке транспортных роликов размеры H, H1 (см. таблицу) увеличиваются на 94 мм в трансформаторах мощностью 160 ... 400 кВ·А.

Технические характеристики трансформаторов ТМГ 11 мощностью 100 ... 2500 кВ·А классов напряжения 6 ... 35 кВ

Номи- нальная	Напряж	сение, кВ	Схема и группа соедине-	Поте	ери, Вт	Напряже-	Мас	сса, кг			
мощность, кВ•А	ВН	нн	ния обмоток	x.x.	к.з.	ние к.з., %	масла	полная			
25	6; 10	0,4	У/Zн-11	95	680	4,0	70	260			
40	6; 10	0,4	У/Zн-11	120	950	4,0	70	300			
		0,23	У/Ун-0		1970	4,5					
	6; 10	0,4	У/Ун-0		1970	4,5					
		·	У/Zн-11	290	2270	4,7	120	490			
	8,05	0,38	Ун/Д-11		1970	4,5	120	170			
100	15		У/Ун-0		1970	4,5					
	27.5	0.4	У/Zн-11		2270	4,7					
	27,5	0,4	У/Ун-0	320	1970	6,5	250	720			
	35		У/Ун-0 У/Zн-11	320	1970 2270	6,5 6,8	230	720			
		0,23	У/Ун-0		2600	4,5					
	- 10	0,23	У/Ун-0	-	2600	4,5					
	6; 10		Д/Ун-11	410	2900	4,5	175	670			
			У/Zн-11	410	2900	4,7	175	670			
160	15	0,4	У/Ун-0		2600	4,5					
	10	0,4	У/Zн-11		2900	4,7					
	27,5		У/Ун-0		2650	6,0					
	35	У/У _Н -0 У/Zн-11		480	2650	6,0	310	980			
					3100	6,8					
	6,3	0,4	У/Ун-0 Д/Ун-11		3700 4200	4,5					
		0,23	Ун/Д-11		3700	4,5					
	6 10	0,20	У/Ун-0		3700	4,5					
	6; 10	6; 10	6; 10	6; 10		Д/Ун-11	570	4200	4,5	225	920
250				У/Zн-11		4200	4,7				
250	10,5		У/Ун-0		3700						
	15	0,4	У/Ун-0		3700	4,5					
			Д/Ун-11		4200						
	27,5		У/Ун-0	620	3700	6,5	420	1200			
	35		У/Ун-0 У/Zн-11	630	3700 4200	6,5 6,8	420	1290			
		0,23	Ун/Д-11		5400	0,0					
		0,23	У/Ун-0	-	5400						
	6; 10	0,4	У/Ун-0 Д/Ун-11		5600						
		- ,	Ун/Д-11		5400	4,5	305	1255			
400	8,15	0,38	Ун/Д-11	830	5400						
	15		У/Ун-0, Д/Ун-11	1	5800						
	27,5	0,4	У/Ун-0	1	5500	6.5	550	1.600			
	35		У/Ун-0	1	5500	6,5	570	1680			
	6; 10		У/Ун-0, Д/Ун-11	1060	7450	5,5	450	1860			
630	27,5	0,4	1	1100	0=0=	. -	F 0 -	2155			
	35		У/Ун-0	1100	8700	6,5	706	2450			
1000	6; 10	0,4	У/Ун-0, Д/Ун-11	1400	10800	5,5	725	2750			
1250	6; 10	0,4	Д/Ун-11	1650	13500	6,0	875	3250			
1600	6; 10	0,4	Д/Ун-11	2150	16500	6,0	1170	4250			
	6; 10	0,4	Д/Ун-11	2600	26500	6,0	1800	6680			
2500	35	610	У/Д-11	3000	23500	6.0	1850	6750			
	33	010	у/д-т1	2000	25500	0.0	1030	0730			

Трансформаторы ТМГ11 мощностью 25 и 40 кВ•А


- 1 пробка сливная;
- 2 ролики транспортные (устанавливаются по заказу потребителя);
- 3 зажим заземления;
- 4 бак;
- 5 табличка;

мощность,					I dom	chni, w	т измеры, мм										
кВ•А	L	В	H	H,	A	A ₁	A ₂	A ₃	A ₄	b	b ₁						
25	800	525	950	683	400	350	207	100	160	140	80						
40	800	525	1020	711	400	350	230	100	160	130	80						

- 6 скоба для крепления при транспортировании;
- 7 серьга для подъема трансформатора;
- 8 карман термометра;
- 9 маслоуказатель;
- 10 ввод ВН;
- 11 ввод НН;
- 12 предохранительный клапан;
- 13 патрубок для заливки масла;
- 14 переключатель.

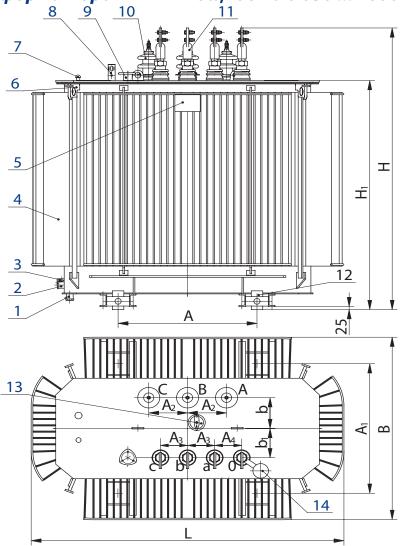
При установке роликов транспортных размеры Н, Н1 увеличиваются на 94 мм

Трансформаторы ТМГ11 мощностью 100 ... 400 кВ•А

- 1-ролик транспортный;
- 2-зажим заземления;
- 3- пробка сливная;
- 4-бак*;
- 5-табличка;
- 6-серьга для подъёма трансформатора;
- 7-ввод ВН;
- 8-ввод НН;
- 9-маслоуказатель;

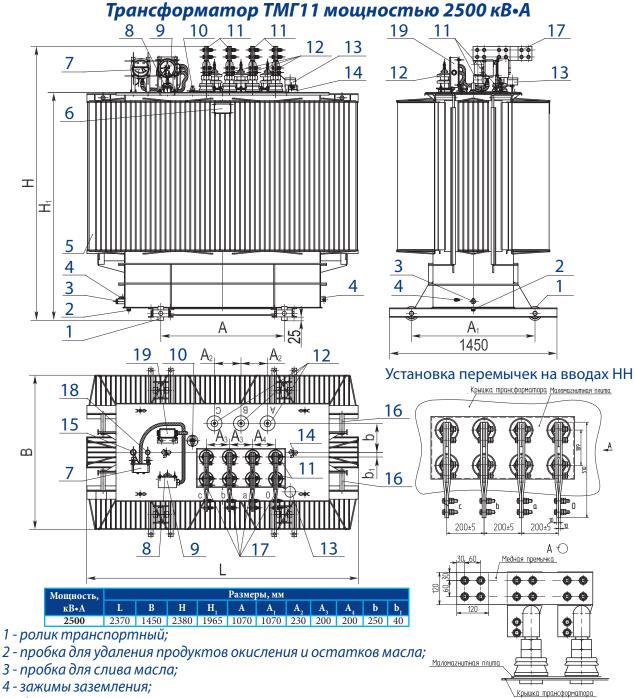
Ш	KB•A	вн, кв	L	ь	п	Π_1	А	\mathbf{A}_1	\mathbf{A}_{2}	\mathbf{A}_3	\mathbf{A}_4	ט	U 1
Т		6; 8,5; 10	935	730	1060	770	450	450	185	100	210	75	100
Т	100	15	935	730	1220	770	450	450	270	100	210	85	100
L		27,5; 35	1300	795	1555	1010	550	550	430	100	100	195	130
Т		6; 10	1020	755	1185	910	550	550	185	100	100	110	120
Т	160	15	1020	755	1320	910	550	550	270	100	100	110	120
L		27,5; 35	1375	860	1620	1065	660	660	430	100	100	195	130
Г		6; 6,3; 10; 10,5	1140	820	1270	970	550	550	200	150	150	140	120
ı	250	15	1140	820	1405	970	550	550	270	150	150	140	120
L		27,5; 35	1490	955	1700	1160	660	660	430	100	100	220	160
Г		6; 8,5; 10	1350	855	1321	1041	660	660	265	150	150	140	105
١	400	15	1350	855	1456	1041	660	660	265	150	150	140	105
L		27,5; 35	1560	970	1800	1255	660	660	430	150	150	240	125

Размеры, мм


10-гильза для стеклянного термометра и термобаллона манометрического термометра;

Мощность, Напряжение

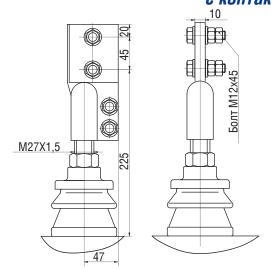
- 11- патрубок для заливки масла;
- 12- переключатель;
- 13-пробивной предохранитель (устанавливается по заказу потребителя).

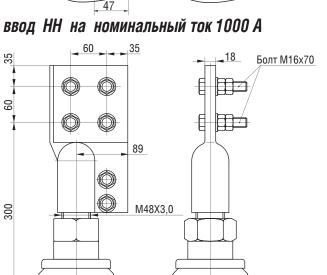

^{*-}графика рисунка соответствует трансформатору мощностью 400 кВ•А

Трансформаторы ТМГ11 мощностью 630 ... 1600 кВ•А

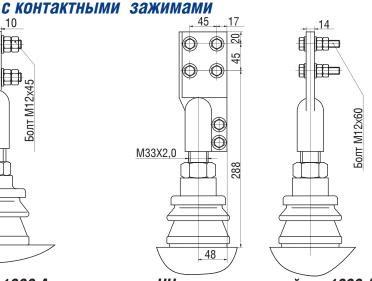
ı	Мощность,	Напряжение		Размеры, мм									
ı	кВ•А	в̂Н, кВ	L	В	H	H	A	A	A ₂	A ₃	A ₄	b	b ₁
I	630	6; 10	1545	1000	1540	1230	820	820	230	135	135	170	170
l	630					1495							
I	1000					1470							
I	1250					1610							
I	1600	6; 10	2060	1260	2170	1775	820	820	230	160	160	195	180

- 1 пробка для удаления остатков масла (в трансформаторе мощностью 1600 кВ А);
- 2 пробка сливная;
- 3 зажим заземления;
- 4 бак*;
- 5 табличка;
- 6 серьга для подъема трансформатора;
- 7 гильза для стеклянного термометра и термобаллона манометрического термометра;
- 8 маслоуказатель;
- 9 патрубок для заливки масла;
- 10 ввод ВН;
- 11 ввод НН;
- 12 ролик транспортный;
- 13 переключатель;
- 14 пробивной предохранитель (устанавливается по заказу потребителя).
- *-графика рисунка соответствует трансформатору мощностью 1250 кВ•А

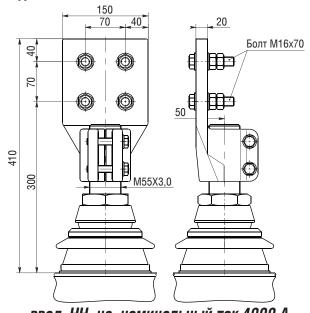



- 4 зажимы заземления;
- 5 бак;
- 6-табличка;
- 7 манометрический термометр (устанавливается по заказу потребителя);
- 8 патрубок для заливки масла;
- 9 мановакуумметр (устанавливается по заказу потребителя);
- 10 привод переключателя;
- 11 вводы НН;
- 12 вводы ВН;
- 13 пробивной предохранитель (устанавливается по заказу потребителя);
- 14 серьга для подъема крышки;
- 15 гильза для установки термобаллона термометра;
- 16 узел для подъема трансформатора и крепления при транспортировании;
- 17 перемычки для вводов НН (поставляются комплектно);
- 18 маслоуказатель;
- 19 коробка зажимов (устанавливается при заказе мановакуумметра и/или манометрического термометра).

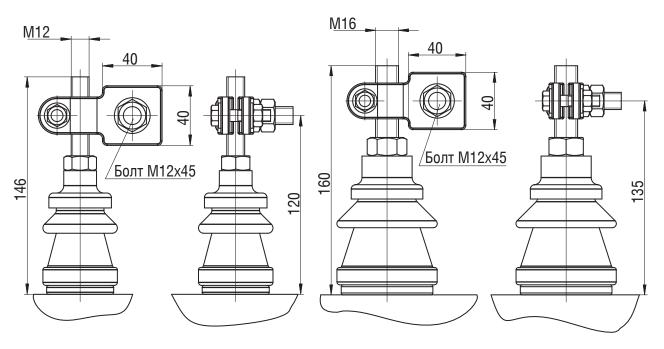
Вводы НН для трансформаторов серий ТМГ, ТМГ11, ТМГСУ, ТМГСУ11, ТМГ12, TMC21, TM3C, TM6C, OM, OMC, OMO, TMTO



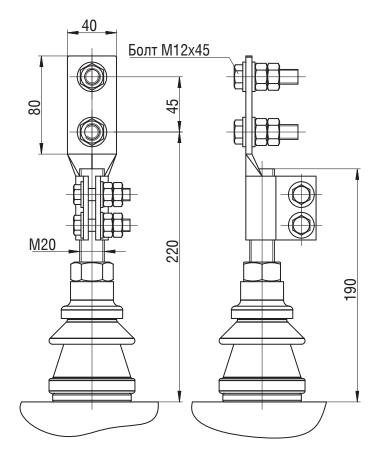
на номинальный ток 100 А на номинальный ток 250 А на номинальный ток 400 А на номинальный ток 630 А



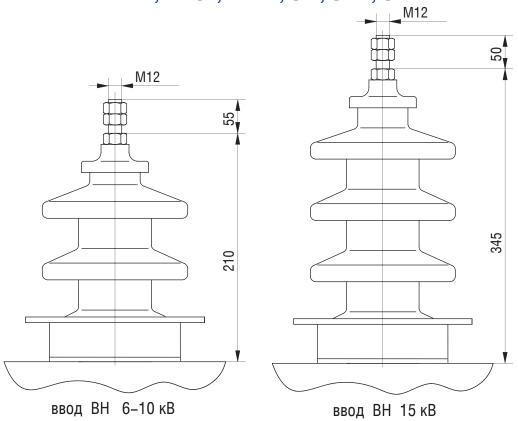
ввод НН на номинальный ток 2500 А


ввод НН на номинальный ток 1600 А

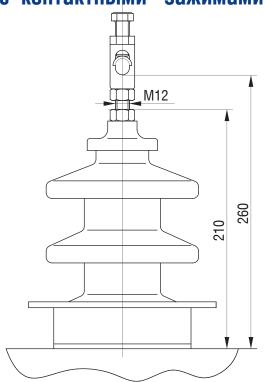
ввод НН на номинальный ток 4000 А


По заказу потребителя вводы НН трансформаторов мощностью 16...400 кВ-А

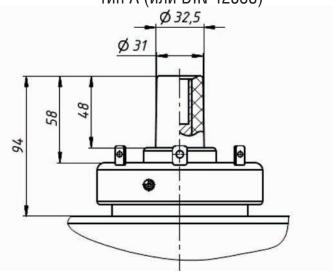
можно комплектовать контактными зажимами.


ввод НН на номинальный ток 250 А

ввод НН на номинальный ток 400 А


ввод НН на номинальный ток 630 А

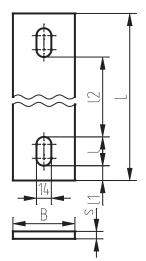
Вводы ВН для трансформаторов серий ТМГ, ТМГ11, ТМГСУ, ТМГСУ11, ТМГ12, ТМГ21, ТМЭГ, ТМБГ, ОМ, ОМГ, ОМП


Вводы ВН 6; 10 кВ для трансформаторов серии ТМПН, ТМПНГ

с контактными зажимами

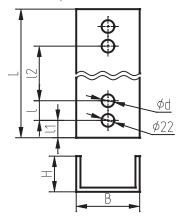
Вводы ВН для трансформаторов ТМГ-630/20-У2, ТМГ-1000/20-У2, ТМГ-1250/20-У2

Штепсельные проходные изоляторы с внешним конусом по EN 50180 тип A (или DIN 42538)



Для присоединения кабелей к изоляторам применяются адапторы: адаптор с изгибом (K)158LR или прямой адаптор (K)152SR.

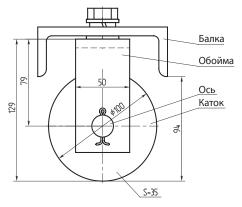
Размеры отверстий под фундаментные болты


Трансформаторы ТМГ мощностью 16...63 кВ·А, ТМГСУ мощностью 25...63 кВ·А,

Тип трансформатора	Номинальная мощность, кВ.А	L,	I, MM	l1, мм	12, MM	S, MM	B, MM
ТМГ-16	16	390	22	9	328	8	50
ТМГ-25 ТМГСУ-25	25	390	22	9	328	8	50
ТМГ-40 ТМГСУ-40	40	390	22	9	328	8	50
ТМГ-63 ТМГСУ-63	63	440	22	9	378	8	50

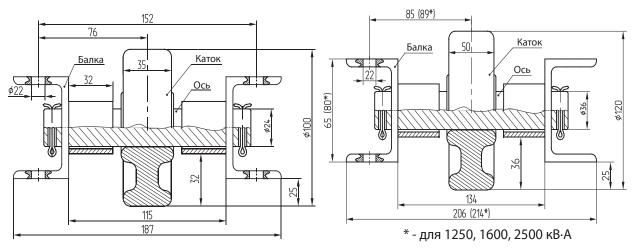
Трансформаторы ТМГ11 мощностью 100...400 кВ·А, ТМГ12 мощностью 250...400 кВ·А, ТМГСУ11 мощностью 100...250 кВ·А

Тип трансформатора	Номинальная мощность, кВ.А	d, MM	L, MM	l, MM	I1, мм	12, MM	Н,	В,
TMF11-100 TMFCY11-100	100	22	570	36	24	450	40	80
TMF11-160 TMFCY11-160	160							
ТМГ11-250 ТМГ12-250 ТМГСУ11-250	250	18	680	46	19	550	40	80
TMΓ11-400 TMΓ12-400	400		790	46	19	660	40	80


АКУСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ силовых масляных трансформаторов типа ТМГ, ТМГ11, ТМГСУ, ТМГСУ11, ТМГ21

Значения корректированного уровня звуковой мощности трансформаторов типа ТМГ, ТМГ11, ТМГСУ, ТМГСУ11, ТМГ21 не превышают нормы, установленные ГОСТ 12.2.024-87. Для трансформаторов мощностью не более 100 кВ-А значения корректированного уровня звуковой мощности не нормируются.

Номинальная мощьность трансформатора кВ·А	100	160	250	400	630	1000	1250	1600	2500
Корректируванный уровень звуковой мощь- ности, дБА, не более	59	62	65	68	70	73	75	75	76


РОЛИКИ ТРАНСПОРТНЫЕ

Для трансформаторов 160...400 кВ-А

Для трансформаторов 630 кВ-А

Для трансформаторов 1000...2500 кВ-А

ПЕРЕГРУЗОЧНАЯ СПОСОБНОСТЬ

силовых масляных трансформаторов мощностью 16 ... 3200 кВ-А

Допустимые систематические нагрузки не вызывают сокращения нормируемого срока службы трансформатора, так как за продолжительность графика нагрузки обеспечивается нормальный или пониженный против нормального расчетный износ изоляции. Допустимые аварийные перегрузки вызывают повышенный по сравнению с нормальным расчетный износ витковой изоляции, что может привести к сокращению нормированного срока службы трансформатора, если повышенный износ впоследствии не компенсирован нагрузками с износом витковой изоляции ниже нормального.

Максимально допустимые *систематические нагрузки* и допустимые *аварийные* **перегрузки** масляных трансформаторов определяются в соответствии с табл. 1 и 2.

В таблицах приведены значения К, и h для суточного прямоугольного двухступенчатого графика нагрузки трансформатора при различных значениях Кі и вохл. Для промежуточных значений ${\sf K_1}$ и Θ охл значение ${\sf K_2}$ следует определять линейной интерполяцией.

вохл - температура окружающей среды, °С;

 ${\sf K_{\scriptscriptstyle 1}}$ - начальная нагрузка, предшествующая нагрузке или перегрузке ${\sf K_{\scriptscriptstyle 2}}$ или нагрузка после снижения К2, в долях номинальной мощности или номинального тока:

$$K_1 = S_1 / 3 HOM = I_1 / I_{HOM}$$

 K_2 - нагрузка или перегрузка, следующая за начальной нагрузкой K_1 , в долях номинальной мощности или номинального тока,

 ${\bf K_2} = {\bf S_2}$ / **Эном** = ${\bf I_2}$ / ${\bf I_{hom}}$ h - продолжительность нагрузки ${\bf K_2}$ на двухступенчатом суточном графике нагрузки, ч. В табл. 1 обозначение (+) указывает на то, что для данного режима нагрузки расчетное значение K2 > 2.0, но допускается его любое значение в интервале 1,5< K2 < 2.0.

Табл. 1 – Нормы максимально допустимых систематических нагрузок

				и значения				
h, ч	0.25	0.4	0.5	0.6	0.7	0.8	0.9	1.0
		<u> </u>	θ_0	_{хл} = - 20 °С		I.	I.	<u> </u>
0.5	+	+	+	+	+	+	+	+
1	+	+	+	+	+	+	+	+
2	+	+	1.99	1.96	1.93	1.89	1.85	1.79
4	1.70	1.69	1.67	1.66	1.64	1.62	1.60	1.57
6	1.56	1.55	1.54	1.54	1.53	1.51	1.50	1.48
8	1.48	1.48	1.47	1.47	1.46	1.45	1.45	1.43
12	1.41	1.40	1.40	1.40	1.40	1.39	1.39	1.38
24	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30
			θ	_{хл} = - 10 °C				
0.5	+	+	+	+	+	+	+	+
1	+	+	+	+	+	+	+	1.95
2	1.95	1.92	1.90	1.87	1.83	1.79	1.75	1.69
4	1.62	1.61	1.60	1.58	1.56	1.54	1.52	1.48
6	1.49	1.48	1.47	1.46	1.45	1.44	1.42	1.40
8	1.41	1.41	1.40	1.40	1.39	1.38	1.37	1.36
12	1.34	1.34	1.33	1.33	1.33	1.32	1.31	1.31
24	1.23	1.23	1.23	1.23	1.23	1.23	1.23	1.23

Продолжение табл. 1

h			К ₂ пр	и значения	$1 \times K_1 = 0.25$	1,0		
h, ч	0.25	0.4	0.5	0.6	0.7	0.8	0.9	1.0
			θ_0	$0^{\circ} 0 = 0^{\circ} \mathbf{C}$				
0.5	+	+	+	+	+	+	+	+
1	+	+	+	+	+	1.99	1.91	1.8
2	1.86	1.83	1.80	1.77	1.74	1.69	1.64	1.56
4	1.54	1.53	1.51	1.50	1.48	1.46	1.43	1.38
6	1.41	1.40	1.39	1.38	1.37	1.36	1.34	1.31
8	1.34	1.33	1.33	1.32	1.31	1.30	1.29	1.27
12	1.27	1.26	1.26	1.26	1.25	1.25	1.24	1.22
24	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16
			θ_{o}	_{хл} = 10 °С				
0.5	+	+	+	+	+	+	+	1.84
1	+	+	+	2.00	1.94	1.86	1.76	1.60
2	1.76	1.73	1.70	1.67	1.63	1.58	1.51	1.40
4	1.46	1.44	1.43	1.41	1.39	1.36	1.32	1.25
6	1.33	1.32	1.31	1.30	1.29	1.27	1.24	1.20
8	1.26	1.26	1.25	1.24	1.23	1.22	1.20	1.17
12	1.19	1.19	1.18	1.18	1.17	1.16	1.15	1.13
24	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08
			θ_0	_{хл} = 20 °С				
0.5	+	+	+	+	+	1.98	1.81	1.00
1	+	1.97	1.92	1.87	1.80	1.71	1.57	1.00
2	1.66	1.63	1.60	1.56	1.51	1.45	1.35	1.00
4	1.37	1.35	1.34	1.32	1.29	1.25	1.19	1.00
6	1.25	1.24	1.23	1.21	1.20	1.17	1.13	1.00
8	1.18	1.17	1.17	1.16	1.15	1.13	1.09	1.00
12	1.11	1.10	1.10	1.09	1.09	1.08	1.06	1.00
24	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	,		θ_{o}	_{хл} = 30 °С			1	
0.5	+	+	+	+	1.92	1.76	1.27	_
1	1.89	1.84	1.79	1.73	1.64	1.51	1.12	_
2	1.55	1.52	1.48	1.44	1.38	1.29	1.02	_
4	1.28	1.26	1.24	1.21	1.18	1.21	0.97	_
6	1.16	1.15	1.13	1.12	1.09	1.05	0.95	_
8	1.09	1.08	1.08	1.06	1.05	1.02	0.94	_
12	1.02	1.02	1.01	1.00	0.99	0.97	0.92	_
24	0.91	0.91	0.91	0.91	0.91	0.91	0.91	_

Продолжение табл. 1

h, ч		K ₂ при значениях K ₁ = 0,251,0												
11, 4	0.25	0.4	0.5	0.6	0.7	0.8	0.9	1.0						
	$\theta_{\rm ox,r}$ = 40 °C													
0.5	+	+	1.94	1.84	1.69	1.26	_	_						
1	1.75	1.70	1.64	1.56	1.44	1.08	_	_						
2	1.43	1.39	1.35	1.30	1.21	0.96	_	_						
4	1.17	1.15	1.13	1.09	1.04	0.89	_	_						
6	1.06	1.05	1.03	1.01	0.97	0.86	_	_						
8	1.00	0.99	0.98	0.96	0.93	0.85	_	_						
12	0.93	0.92	0.91	0.90	0.88	0.84	_	_						
24	0.82	0.82	0.82	0.82	0.82	0.82	_	_						

Табл. 2 – Нормы допустимых аварийных перегрузок

таол. 2 – пормы допустимых аварииных перегрузог											
h, ч				значениях			·				
, 	0.25	0.4	0.5	0.6	0.7	0.8	0.9	1.0			
			θ	_{охл} = - 20 °	C						
0.5	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00			
1	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00			
2	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00			
4	1.90	1.80	1.80	1.80	1.80	1.80	1.80	1.80			
6	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70			
8	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70			
12	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60			
24	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60			
	•		θ	_{охл} = - 10 °()						
0.5	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00			
1	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00			
2	2.00	2.00	2.00	2.00	2.00	2.00	1.90	1.90			
4	1.80	1.80	1.80	1.80	1.80	1.70	1.70	1.70			
6	1.70	1.70	1.70	1.60	1.60	1.60	1.60	1.60			
8	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60			
12	1.60	1.60	1.50	1.50	1.50	1.50	1.50	1.50			
24	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50			
				$\theta_{\text{oxj}} = 0 ^{\circ}\text{C}$							
0.5	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00			
1	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00			
2	2.00	2.00	2.00	1.90	1.90	1.90	1.90	1.80			
4	1.70	1.70	1.70	1.70	1.70	1.70	1.60	1.60			
6	1.60	1.60	1.60	1.60	1.60	1.50	1.50	1.50			
8	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50			
12	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50			
24	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50			

Продолжение табл. 2

_	K_2 при значениях $K_1 = 0.251.0$										
һ, ч	0.25	0.4	0.5	0.6	0.7	0.8	0.9	1.0			
				$\theta_{\rm oxj} = 10^{\circ} \text{C}$		L	L				
0.5	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00			
1	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00			
2	2.00	2.00	2.00	2.00	2.00	2.00	1.90	1.90			
4	1.80	1.80	1.80	1.80	1.80	1.70	1.70	1.70			
6	1.70	1.70	1.70	1.60	1.60	1.60	1.60	1.60			
8	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60			
12	1.60	1.60	1.50	1.50	1.50	1.50	1.50	1.50			
24	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50			
				$\theta_{\text{oxj}} = 20 ^{\circ}\text{C}$							
0.5	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00			
1	2.00	2.00	2.00	2.00	2.00	2.00	1.80	1.80			
2	1.80	1.80	1.80	1.80	1.70	1.70	1.70	1.60			
4	1.50	1.50	1.50	1.50	1.50	1.40	1.40	1.40			
6	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.30			
8	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30			
12	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30			
24	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30			
				$\theta_{\rm oxj}$ = 30 °C							
0.5	2.00	2.00	2.00	2.00	2.00	2.00	2.00	1.90			
1	2.00	2.00	2.00	2.00	1.90	1.90	1.80	1.70			
2	1.80	1.70	1.70	1.70	1.60	1.60	1.50	1.40			
4	1.40	1.40	1.40	1.40	1.40	1.30	1.30	1.30			
6	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.20			
8	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20			
12	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20			
24	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20			
				$\theta_{\text{охл}} = 40 ^{\circ}\text{C}$							
0.5	2.00	2.00	2.00	2.00	2.00	2.00	1.90	1.70			
1	2.00	1.90	1.90	1.90	1.80	1.70	1.60	1.40			
2	1.60	1.60	1.60	1.50	1.50	1.40	1.30	1.30			
4	1.30	1.30	1.30	1.30	1.20	1.20	1.20	1.20			
6	1.20	1.20	1.20	1.20	1.20	1.20	1.10	1.10			
8	1.20	1.10	1.10	1.10	1.10	1.10	1.10	1.10			
12	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10			
24	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10			

Опросный лист силового масляного трансформатора

1	Тип (ТМГ, ТМЭГ, ТМБГ и т. д.)		
2	Номинальная частота		Гц
3	Номинальная мощность		кВ∙А
4	Номинальное напряжение стороны ВН		кВ
5	Номинальное напряжение стороны НН		кВ
6	(в режиме холостого хода)		
Ū	Способ, диапазон и ступени регулирования напряжения на стороне ВНПБВ	±2x2,5	%
7	(если иное, то указать в п. примечания)		0/
1	Напряжение короткого замыкания при 75 °C (±10%) (указывается при отличии от стандартного)		%
8	Потери холостого хода (+15%)		Вт
0	(указываются при отличии от стандартного)		D
9	Потери короткого замыкания при 75 °C (+10%)		Вт
10	Схема и группа соединения обмоток		
	(первый символ относится к стороне высшего напряжения (ВН)		
11	Климатическое исполнение и категория размещения (У1, ХЛ1, УХЛ1, Т1 и т.д.)		
12	Степень защиты		
	(указывается если отлично от IP00)		
13	Габаритные размеры (max): (при отличии от указанных в каталоге продукции)		
	длина		MM
	ширина		MM
	высота		MM
14	Масса трансформатора (+10%) (в случае ограничения)		ΚГ
15	Конструктивные особенности:		
Прі	имечания:		
	нтактное лицо для проведения технических переговоров:		
тел	пефон:, Ф.И.О		
Сті	рана (город) поставки трансформатора		